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Abstract

The analysis of standing waves, which correspond to the reactive part of the power in structures, is not a su�cient

tool for studying structural vibration problems. Indeed, the active power component (structural intensity) has shown to

be of great importance in studying damped structural vibration problems. One of the most common numerical dis-

cretization methods used in structural mechanics is the ®nite element method. Although this procedure has its ad-

vantages in solving dynamic problems, it also has disadvantages mainly when dealing with high frequency problems and

large complex spatial structures due to the prohibitive computational cost. On the other hand, the spectral element

method has the potential to overcome this kind of problem. In this paper, the formulation of the Timoshenko beam

spectral element is reviewed and applied to the prediction of the structural intensity in beams. A structure of two

connected beams is used. One of the beams has a higher internal dissipation factor. This factor is used to indicate

damping e�ect and therefore causes structural power to ¯ow through the structure. The total power ¯ow through a

cross-section of the beam is calculated and compared to the input power. The spectral element method is shown to be

more suitable to model higher frequency propagation problems when compared to the ®nite element method. Ó 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the well-known ways to e�ciently analyze vibrations of frame structures with complicated
boundaries and di�erent discontinuities is the use of matrix formulations such as the ®nite element method
(FEM). However, a large number of ®nite elements must be used to adequately model the distribution of
the inertia of the structure. Furthermore, the higher the frequency, the larger the number of elements that
must be used. The FEM can also show some computational di�culties when analyzing large frame
structures, where members are usually long and too many ®nite elements need to be used in the discreti-
zation process. Recently, one of the potential alternative techniques being used to analyze the dynamical
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behavior of structures is the power ¯ow (or structural intensity) approach. The term power ¯ow denotes the
energy per unit time ¯owing across a surface de®ned within the structure by its normal. The use of power
¯ow techniques in this kind of problem may be very useful because power ¯ow calculation combines both
force and velocity in one concept.

The measurement of structural power ¯ow was ®rst introduced by Noiseux (1970). In his work, bending
vibrational waves obtained as a vector at a measurement point were described in terms of transverse vi-
brations, and then, the combined rotational and linear accelerations were used for power ¯ow estimation
considering far ®eld conditions. The near ®eld conditions were then included in the generalized approach.
Experimental results were also used to illustrate the measurement technique. Experimental methods for
measuring ¯exural power ¯ow have been extensively investigated by Pavic (1976) and Verheij (1980). Power
¯ow is usually computed experimentally from measured vibrations using ®nite di�erence approximations of
the spatial derivatives that appear in the analytical formulations. The number of accelerometers used varies
from two to ®ve along each direction, depending on the assumptions made. Other methods have also been
used in predicting power ¯ow from measured vibration data: a wave component approach by Halkyard and
Mace (1993), a regressive discrete fourier series (RDFS) by Arruda et al. (1996b), and a modi®ed Prony
method by Arruda et al. (1996a). Hambric and Taylor (1994) have presented a general approach that allows
the application of the FEM power ¯ow analysis to real structures by incorporating experimentally measured
termination impedance as boundary conditions. This approach has been investigated on a straight beam.

Fig. 1. Relations between FEM and SEM models.

Fig. 2. Timoshenko beam with end loads and DOF.
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Fig. 3. FEM and SEM discretized models.

Fig. 4. Comparison of FEM predictions of input power and computed power ¯ow at point R, at frequency range of 0±1 kHz.
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In this paper, the formulations for power ¯ow calculations are brie¯y reviewed. As the power ¯ow
computations are based on predicted vibration responses, these responses are obtained using FEM and the
spectral element method (SEM). The SEM formulations for Timoshenko beams are described. The SEM,
®rst presented by Doyle (1997), is formulated directly in the frequency domain and thus presents many
advantages in handling vibration problems e�ciently even at high frequencies. One of the advantages of
this method is that it easily incorporates the use of the so-called throw-o�, or semi-in®nite element. This
element behaves in the sense that it is a conduit for energy propagation out of the system. It can be used
especially when the time of interest is short and the structure is large. This kind of element cannot be easily
modeled by the conventional FEM. Therefore, the structural example used in this paper to compare FEM
and SEM results does not utilize throw-o� elements.

The structure used consists of two coupled straight beams. One of these beams has a higher dissipation
factor. The power ¯ow in the structure is predicted using FEM and SEM. The higher-order Timoshenko
theory for beams is used in both methods.

2. Timoshenko beam spectral element

Doyle (1997) presented a spectrally formulated ®nite element for Timoshenko beams, known as the
spectral element, to study wave propagation in beam-type structures. In contrast to the conventional ®nite

Fig. 5. Comparison of SEM predictions of input power and computed power ¯ow at point R, at frequency range of 0±1 kHz.
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element, this formulation provides very accurate solutions that are based on exact shape functions and thus
exact mass distribution within each structural element. This analysis, in turn, provides an accurate dynamic
characterization of beam-type structures. In general, a structure is discretized into a number of spectral
elements and then these elements are assembled in an analogous way to that of the FEM. The main dif-
ference is that in FEM, mass and sti�ness matrices are all built and then the responses are calculated in
frequency domain or in time domain. On the other hand, in SEM, the dynamic sti�ness matrix is built in
frequency domain and therefore, responses in frequency domain can directly be calculated. Time domain
responses can then be easily obtained by performing an inverse FFT. Fig. 1 shows that SEM can be seen as
a combination of the spectral methods and the assembling features of FEM. It can be shown that using one
spectral element is equivalent to using an in®nite number of conventional ®nite elements (Doyle, 1997).

For a ®nite Timoshenko beam, ¯exural waves cause two internal forces to act; bending forces and shear
forces, which, in turn, cause two displacement components: transversal and rotational (Fig. 2).

Introducing shear deformation, two independent variables, v�x; t� and /�x; t�, are required to describe the
relevant dynamics of the beam which is governed by (Craig, 1981)
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where GAj is the shear sti�ness, EI is the bending sti�ness, qA and qI are the corresponding inertias, and j
is a geometrical constant that depends on the shape of the cross-section. The general solution of Eq. (1) can
be given by the spectral representation,
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Fig. 6. Absolute error between input power and power ¯ow computed using FEM and SEM, at frequency range of 0±1 kHz.
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where xk is the discrete angular frequency, v̂�x� and /̂�x� are spatially dependent Fourier coe�cients and
they are functions of xk, and i � �������ÿ1

p
. Assume the displacements to have a spectral representation or

kernel solution functions of the form,

v̂�x� � P1Aeÿik1x � P2Beÿik2x ÿ P1Ceÿik1�Lÿx� ÿ P2Deÿik2�Lÿx�;

/̂�x� � Aeÿik1x � Beÿik2x � Ceÿik1�Lÿx� �Deÿik2�Lÿx�;
�3�

where P1 and P2 are de®ned as the amplitude ratios given by
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and k1, k2 are the wave numbers de®ned as
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Fig. 7. Comparison of FEM predictions of input power and computed power ¯ow at point R, at frequency range of 1±10 kHz.
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For the uniform Timoshenko beam element shown in Fig. 2, the resultants of shear forces and bending
moments acting on any section are related to the transversal and rotational displacements v and /, re-
spectively,

V �x� � GAj
ov
ox

�
ÿ /

�
� ÿEI

o2/
ox2
� qI

o2/
ot2

;

M�x� � EI
o/
ox
:

�6�

The dynamic sti�ness matrix can be set up by relating the nodal displacements to the coe�cients of the
kernel function. The formulations that follow were found in the literature, (Doyle, 1997) but when used
yielded wrong results, due to printing errors. Symbolic mathematical manipulation software (Waterloo
Mapleâ) has been used to obtain the shape function expressions for the Timoshenko beam. By using the
de®nitions, v̂1 � v̂�0�, v̂2 � v̂�L�, /̂1 � /̂�0�, /̂2 � /̂�L� and V̂ 1 � V̂ �0�, V̂ 2 � V̂ �L�, M̂1 � M̂�0�, M̂2 �
M̂�L�, the following relation can be written:
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C
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with e1 � eÿik1L and e2 � eÿik2L.

Fig. 8. Comparison of SEM predictions of input power and computed power ¯ow at point R, at frequency range of 1±10 kHz.
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By using Eqs. (3) and (7), the spatial distribution of the nodal displacements can be written in the
following form:

v̂�x�
/̂�x�

� �
� P1eÿik1x P2eÿik2x ÿP1eÿik1�Lÿx� ÿP2eÿik2�Lÿx�

eÿik1x eÿik2x eÿik1�Lÿx� eÿik2�Lÿx�

� �
�Ŝ�

v̂1
/̂1
v̂2
/̂2

8>><>>:
9>>=>>; � �Ĝ�

v̂1
/̂1
v̂2
/̂2

8>><>>:
9>>=>>;; �8�

where bĜc gives the shape functions for Timoshenko beam element. After the combination of Eqs. (6) and
(8), the nodal forces can then be rearranged to give
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where bk̂c is a complex, symmetric dynamic sti�ness matrix with elements given as
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Fig. 9. Absolute error between input power and power ¯ow computed using FEM and SEM, at frequency range of 1±10 kHz.
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z11 � 1
ÿ ÿ eÿin1 eÿin2

�
; z12 � eÿin1 ÿ eÿin2 ; z21 � eÿin1 � eÿin2 ; z22 � 1

ÿ � eÿin1 eÿin2
�
:

In SEM, two di�erent types of elements can be used: 2-noded and throw-o�. For throw-o� element,
which extends to in®nity, the equations of motion can easily be established from Eq. (3) by simply putting
C � D � 0, as waves propagate in only one direction. The various discretized elements in a structure can
then be assembled into a global system in a way analogous to that of FEM resulting in a relation between
the global shear forces and moments and the global nodal degrees of freedom written as

bK̂gcfv̂gg � fF̂gg: �10�
In SEM, only one element is needed between any two discontinuities, independent of its length. This

plays the role of making the number of elements needed to model a structure relatively very small when
compared to FEM. Therefore, the frequency response at di�erent nodal degrees of freedom can be re-
covered with less computational cost, even when solving this system of equations at each frequency
component. These frequency response functions can easily be used to predict the active power ¯ow at any
given point of the structure.

3. Flexural power ¯ow in Timoshenko beams

The active power ¯ow along a beam has two terms: the bending forces times the velocity and the bending
moments times the angular velocity. For harmonic analysis, the force and the velocity are described as
complex quantities and as functions of frequency. It is well established that the propagating quantity is the
active component of the power, since this component is associated with energy ¯ow. The time-averaged
active power can then be de®ned by the real part of the power given by

hPit � 1
2
RfF �x� _v��x�g; �11�

Fig. 10. Comparison of the frequency response functions at the point R obtained by the SEM- and FEM-based models, at frequency

range of 1±10 kHz.
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where * denotes the complex conjugate and F �x� and _v�x� are the complex amplitudes of the force and
the velocity, respectively. The active power ¯ow at any point along a Timoshenko beam is then given
by

hPBit �
1

2
R

��
ÿ EI

o2/
ox2
ÿ x2qI/

�
�ixv�� � EI

o/
ox

� �
�ix/��

�
; �12�

where the spatial derivatives are calculated using the shape functions of the Timoshenko beam element.

4. Illustrative numerical analysis

A solution for the active power ¯ow is sought using FEM and SEM. For this purpose, two point-
coupled beams of the same cross-section �0:025 m� 0:0034 m� are used (Fig. 3). Beam a is an aluminum
beam of length L� 1.1 m, with material properties given as q � 2711 kgmÿ3, E � 61� 109 N mÿ2, and null
dissipation factor �g � 0� is assumed. Beam b is made of Lexan material of length L� 0.4 m, with material
properties given as q � 1280 kg mÿ3, E � 2:62� 109 N mÿ2, and dissipation factor g � 10%. This higher
dissipation factor is used as an energy sink, as this energy sink is necessary to have power ¯ow along the
beam.

The structure is discretized via FEM using Timoshenko ®nite elements (Craig, 1981). Beam a is dis-
cretized into 55 ®nite elements, and beam b into 20 elements. As for SEM, only two elements are needed
(Fig. 3). The excitation load is applied at the free end of beam a, and power ¯ow components are calculated
by FEM and SEM at a point R along beam a, which lies at a distance of 0.5 m from the excitation point. As
the dissipation factor in beam a has a null value, it is eventually expected that the quantity of active power
¯ow computed at any point along beam a would be exactly the same as the input power. This comparison
between the input power and the active power can also be used as a validation tool for the predictions of
structural power ¯ow components.

It should be mentioned here that the throw-o� element was not used here because an anechoic boundary
condition completely dissipates energy out of the system, and its dynamic characteristics could not be easily
modeled via FEM. It maybe interesting to notice that some localized sti�ness and damping can be used at a
throw-o� node in order to model a boundary condition which re¯ects some of the incoming energy.

A frequency range of 0±1 kHz is ®rst analyzed, which encompasses approximately the ®rst 15 ¯exural
modes. The FEM FRFs are computed by direct inversion of the dynamic sti�ness matrix [K ÿ x2M ].

Although the input power compared to the computed power ¯ow at point R using both methods
seemingly look the same (Figs. 4 and 5) due to the dB scale, there is a small di�erence. This percentage error
is calculated at each frequency and can be seen clearly in the next ®gure. It can be noted that for the FEM
results the error increases with the increasing frequency (Fig. 6).

Higher frequency analyses are also conducted. The error seems to increase signi®cantly in FEM pre-
dictions. This is an expected result since the same mesh used for low frequencies has also been used for
higher frequencies. On the other hand, the error in the SEM remains very small. This can be clearly es-
tablished from Figs. 7±9.

It can also be noticed that resonance frequencies are di�erent in both FEM and SEM predictions (Fig.
10). This is related to the fact that SEM predictions of frequency response are based on exact shape
functions, while in FEM, predictions are based on the order of the ®nite element. In FEM, the error of
approximation is controlled by mesh re®nement (h-version) and by the polynomialÕs degree of elements (p-
version). FEM approximations can be improved by adopting higher-order versions of FEM (p-, h- or hp-
versions). However, this eventually would result in higher and undesirable computational cost.
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5. Concluding remarks

There is a signi®cant importance in studying the power ¯ow in damped structures. These studies, when
performed via the FEM, present some di�culties at higher frequencies due to high modal density and
model size constraints. The SEM, on the other hand, are formulated directly in the frequency domain and
thus present considerable advantages in handling such problems. This can be modeled in the FEM, but the
signi®cant di�erence between the input power and the computed power at a point along the beam indicates
that FEM is less accurate. It should be noted that this should not occur in this case as the internal damping
factor was not included in beam a of the model. The di�erence is expected to increase with frequency. In the
case of the SEM, this error is signi®cantly smaller. The SEM may fairly be well established as highly ef-
®cient method for solving high-frequency dynamic problems. In general, the spectral element method is
found to provide very accurate predictions of active power ¯ow components when compared to the con-
ventional ®nite element predictions, especially at high frequencies. The disadvantage of the SEM is the
small element library available. Nevertheless, SEM can be associated with FEM and BEM when complex
geometries are involved (Doyle, 1997).
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